
A Space-efficient Parallel Algorithm for Counting
Exact Triangles in Massive Networks

Shaikh Arifuzzaman∗†, Maleq Khan∗, and Madhav Marathe∗†
∗Network Dynamics & Simulation Science Laboratory, Virginia Bioinformatics Institute

†Department of Computer Science
Virginia Tech, Blacksburg, Virginia 24061 USA

Email: {sm10, maleq, mmarathe}@vbi.vt.edu

Abstract—Finding the number of triangles in a network
(graph) is an important problem in mining and analysis of
complex networks. Massive networks emerging from numerous
application areas pose a significant challenge in network analytics
since these networks consist of millions, or even billions, of nodes
and edges. Such massive networks necessitate the development
of efficient parallel algorithms. There exist several MapReduce
and an only MPI (Message Passing Interface) based distributed-
memory parallel algorithms for counting triangles. MapReduce
based algorithms generate prohibitively large intermediate data.
The MPI based algorithm can work on quite large networks,
however, the overlapping partitions employed by the algorithm
limit its capability to deal with very massive networks.

In this paper, we present a space-efficient MPI based paral-
lel algorithm for counting exact number of triangles in mas-
sive networks. The algorithm divides the network into non-
overlapping partitions. Our results demonstrate up to 25-fold
space saving over the algorithm with overlapping partitions.
This space efficiency allows the algorithm to deal with networks
which are 25 times larger. We present a novel approach that
reduces communication cost drastically (up to 90%) leading to
both a space- and runtime-efficient algorithm. Our adaptation
of a parallel partitioning scheme by computing a novel weight
function adds further to the efficiency of the algorithm. Denoting
average degree of nodes and the number of partitions by d̄ and
P , respectively, our algorithm achieves up to O(P 2)-factor space
efficiency over existing MapReduce based algorithms and up to d̄-
factor (approx.) over the algorithm with overlapping partitioning.

Keywords-counting triangles, parallel algorithms, massive net-
works, social networks, graph mining, space efficiency.

I. INTRODUCTION

Counting triangles in a network is a fundamental algo-
rithmic problem in the analysis of complex networks. It has
many important applications such as computing clustering
coefficient, transitivity, and triangular connectivity of networks
[1]. Further, counting triangles has been used in detecting
spamming activity and assessing content quality of networks
[2], uncovering the thematic structure of the web [3], query
optimization in database [4], and detecting communities or
clusters in social and information networks [5].

Network is a powerful abstraction for representing underly-
ing relations in large unstructured datasets. Examples include
the web graph [6], various social networks [7], biological
networks [8], and many other information networks. In the
era of big data, the emerging network data is also very large.
Social networks such as Facebook and Twitter have millions

to billions of users [1], [9]. Such massive networks motivate
the need for space-efficient parallel algorithms.

Existing Algorithms. The problem of counting triangles has
a rich history [2], [10]–[12]. Despite the fairly large volume
of work addressing this problem, only recently has attention
been given to the problems associated with massive networks.
Several techniques can be employed to deal with such massive
networks: streaming algorithms [2], [13], sparsification based
algorithms [14], external-memory algorithms [1], and parallel
algorithms [12], [15], [16]. The streaming and sparsifica-
tion based algorithms are approximation algorithms. External
memory algorithms can be very I/O intensive leading to a
large runtime. Efficient parallel algorithms can achieve running
efficiency by distributing computing tasks among multiple
processors.

Over the last couple of years, several parallel algorithms
have been proposed. Two parallel algorithms for exact triangle
counting using the MapReduce framework are presented in
[12]. The first algorithm generates huge volumes of interme-
diate data by enumerating all possible 2-paths which require
a large amount of time and memory while shuffling and
regrouping. The second algorithm suffers from redundant
counting of triangles. An improvement of the second algorithm
is given in [17]. Though this scheme reduces the redundant
count of [12] to some extent, the redundancy is not entirely
eliminated. In fact, for P partitions, the algorithm over-counts
(P -1 times) triangles whose vertices lie in the same partition.
Further, the expected size of the output from all Map instances
is O(mP) (m is the number of edges) which is significantly
larger than the size of the original network.

In a recent work [18], Park et al. propose a randomized
MapReduce algorithm for triangle enumeration. To achieve
a runtime complexity of the optimal serial algorithm, each
reducer requires a space of Ω{m3/4

√
logm} (Theorem 3 in

[18]), even though it gives an approximate count. Another
MapReduce based approximation algorithm is proposed in
[16], which is based on wedge sampling technique [14].

A recent paper [15] proposes an MPI based parallel algo-
rithm for counting the exact number of triangles in massive
networks. The algorithm employs an overlapping partitioning
scheme and a novel load balancing scheme. The overlapping
partitions eliminate the need for message exchanges leading
to a fast algorithm. However, the overlapping partitions pose

significant space overhead since those might grow as large as
the whole network wiping out the benefit of partitioning.

Although there exists a couple of standard parallel graph
partitioning algorithms such as Parmetis and Zoltan [19], those
might not work well for our problem. Those algorithms strive
to minimize cut edges, which help reduce communication
overhead, however, we also require the computation cost to
be well-balanced among processors. We need to estimate
weights of nodes (based on triangle counting cost) in parallel
in the partitioning procedure which is not readily available in
standard algorithms. Hence we adapt a parallel partitioning
scheme [15] which considers the actual triangle counting cost
incurred at nodes and thus helps in balancing computation
loads.

Our Contributions. In this paper, we present a space-
efficient MPI based parallel algorithm for counting exact
number of triangles in massive networks. The algorithm di-
vides the network into non-overlapping partitions and achieves
a space efficiency of up to 25 times over the algorithm
with overlapping partitions for the networks we experimented
on. This space efficiency allows the algorithm to deal with
networks which are 25 times larger. We present a novel
approach that reduces approx. 70% to 90% of communication
cost without requiring additional space, which leads to both
a space- and runtime-efficient algorithm. Our adaptation of
a parallel partitioning scheme by computing a novel weight
function offers additional runtime efficiency to the algorithm.
Our algorithm achieves up to O(P 2)-factor space saving over
existing MapReduce based algorithms and up to d̄-factor
(approx.) over the algorithm with overlapping partitioning.

Remarks. Note that unlike approximation algorithms which
provide an overall (global) estimate of number of triangles in
the graph, this paper presents an exact algorithm which can
be used to count triangles incident on individual nodes (local
triangles). Such local counts facilitate computing clustering
coefficient of nodes and finding vertex neighborhood and
community seeds [20]. To the best of our knowledge, among
all exact algorithms, our algorithm has the lowest space
complexity, without even compromising its runtime efficiency.

II. PRELIMINARIES

Below are the notations, definitions, datasets, and computa-
tion model used in this paper.

Notation and Definitions. The given network is denoted
by G(V,E), where V and E are the sets of vertices and
edges, respectively, with m = |E| edges and n = |V | vertices
labeled as 0, 1, 2, . . . , n − 1. We use the words node and
vertex interchangeably. We assume that the input network is
undirected. If (u, v) ∈ E, we say u and v are neighbors to
each other. The set of all neighbors of v ∈ V is denoted by
Nv , i.e., Nv = {u ∈ V |(u, v) ∈ E}. The degree of v is
dv = |Nv|. A triangle is a set of three nodes u, v, w ∈ V
such that there is an edge between each pair of these three
nodes, i.e., (u, v), (v, w), (w, u) ∈ E. The number of triangles
incident on v, denoted by Tv , is same as the number of edges
among the neighbors of v, i.e.,

TABLE I
DATASET USED IN OUR EXPERIMENTS. K, M AND B DENOTE THOUSANDS,

MILLIONS AND BILLIONS, RESP.

Network Nodes Edges Source
web-Google 0.88M 5.1M SNAP [23]
web-BerkStan 0.69M 6.5M SNAP [23]
Miami 2.1M 50M [21]
LiveJournal 4.8M 43M SNAP [23]
Twitter 42M 2.4B [24]
PA(n, d) n 1

2
nd Pref. Attachment

Tv = | {(u,w) ∈ E : u,w ∈ Nv} |.

Let P be the number of processors used in the computation,
which we denote by p0, p1, . . . , pP−1 where each subscript
refers to the rank of a processor.

Datasets. We use both real world and artificially generated
networks for our experiments. A summary of all the networks
is provided in Table I. Miami [21] is a synthetic, but realistic,
social contact network for Miami city. Twitter, LiveJour-
nal, web-BerkStan, and web-Google are real-world networks.
Artificial network PA(n, d) is generated using preferential
attachment (PA) model [22] with n nodes and average degree
d. Both real-world and PA(n, d) networks have very skewed
degree distributions. Networks having such distributions create
difficulty in partitioning and balancing loads and thus give
us a chance to measure the performance of our algorithms in
some of the worst case scenarios. Note that in our experiments
we consider edges of the input graph to be undirected– we
ignore the original directionality of edges for web-Google,
web-BerkStan, and LiveJournal networks.

Computation Model. We develop parallel algorithms for
MPI based distributed-memory parallel systems where each
processor has its own local memory. The processors do not
have any shared memory, and they communicate via exchang-
ing messages.

III. A BACKGROUND ON COUNTING TRIANGLES

First, we describe the state-of-the-art sequential algorithm
which our parallel algorithm is based on. Space complexity of
other related parallel algorithms is discussed thereafter.

A. Efficient Sequential Algorithm.

A naı̈ve approach to count triangles in a graph G(V,E) is to
check, for all possible triples (u, v, w), u, v, w ∈ V , whether
(u, v, w) forms a triangle; i.e., check if (u, v), (v, w), (u,w) ∈
E. There are

(
n
3

)
such triples, and thus this algorithm takes

Ω(n3) time. A simple but efficient algorithm for counting
triangles is: for each node v ∈ V , find the number of pairs
of neighbors that complete a triangle with vertex v. In this
method, each triangle (u, v, w) is counted six times – all
six permutations of u, v, and w. A total ordering ≺ of the
nodes (e.g., ordering based on node IDs or any arbitrary
ordering) makes sure each triangle is counted exactly once.
However, algorithms in [10], [11] incorporate an interesting
node ordering based on the degrees of the nodes, with ties

1: for each edge (u, v) do
2: if u ≺ v, store v in Nu

3: else store u in Nv

4: for v ∈ V do
5: sort Nv in ascending order
6: T ← 0 {T is the count of triangles}
7: for v ∈ V do
8: for u ∈ Nv do
9: S ← Nv ∩Nu

10: T ← T + |S|

Fig. 1. The state-of-the-art sequential algorithm for counting triangles.

broken by node IDs, as defined as follows:

u ≺ v ⇐⇒ du < dv or (du = dv and u < v). (1)

These algorithms are further improved in a recent paper [15]
by a simple modification. The algorithm [15] defines Nv ⊆ Nv

as the set of neighbors of v having a higher order ≺ than v,

Nv = {u : (u, v) ∈ E, v ≺ u}. (2)

That is, for an edge (u, v), the algorithm stores u in Nv if
v ≺ u, and consequentially, u ∈ Nv ⇐⇒ v /∈ Nu. Then
the triangles containing node v and any u ∈ Nv can be found
by set intersection Nu ∩ Nv . Now we call d̂v = |Nv| as the
effective degree of node v. The cost for computing Nu ∩Nv

requires O(d̂v + d̂u) time when Nv and Nu are sorted leading
to a total runtime of O

(∑
v∈V dvd̂v

)
(Theorem 2 in [15]).

The above state-of-the-art sequential algorithm is presented in
Fig. 1.

B. Space Complexity of Related Parallel Algorithms.

Among the parallel algorithms discussed in Section I, there
are several MapReduce based algorithms [12], [17] and an
MPI based algorithm [15] that count exact number of triangles.
The MapReduce based algorithm proposed in [12] works in
two rounds of Map and Reduce phases. In Map phases, the
algorithm generates a huge amount of intermediate data which
are all possible 2-paths w-v-u centered around each node
v ∈ V , such that u,w ∈ Nv . The algorithm then check
whether such 2-paths are closed by an edge, i.e. if (w, u) ∈ E.
Since the number of these 2-paths is very large, even larger
than the network size, shuffling and regrouping these data
requires a large runtime and enormous memory. As instance,
for Twitter network, 300B 2-paths are generated whereas
the network has only 2.4B edges. The space requirement
becomes prohibitively excessive for very large networks. Even
for smaller networks, if there are few nodes with high degrees,
say O(n), this algorithm generates O(n2) 2-paths centered at
those nodes, which is quite unmanageable. Many real networks
demonstrate power-law degree distributions where some nodes
have very large degrees (See dmax in Table II).

Another MapReduce algorithm proposed in [12], the
partition-based algorithm, has a space requirement of O(mP)
for the Map phase (with P partitions), which is P times larger
than the network size. The algorithm in [17] improves the

runtime of the partition-based algorithm of [12], however the
space requirement still remains same.

The MPI based algorithm in [15] divides the input graph
into a set of P overlapping partitions as follows. First,
V is partitioned into P disjoint subsets V c

i , such that⋃
0≤k<P V c

k = V . Then, a set Vi is constructed as Vi =

V c
i ∪

(⋃
v∈V c

i
Nv

)
. Now, set of edges Ei, defined as Ei =

{(u, v)|u ∈ Vi, v ∈ Nu}, constitutes the i-th overlapping
partition which pi works on. Note that edges in Ec

i =
{(u, v)|u ∈ V c

i , v ∈ Nu} constitute the disjoint (non-
overlapping) portion of the partition i. Rest of the edges
(u, v) ∈ Ei−Ec

i overlaps across multiple partitions. Now, the
overlapping partitions allow the algorithm to count triangles
without any communication among processors leading to
faster computation. However, overlapping partitions have a
significant space overhead. Assuming an average degree d̄ of
the network, the algorithm has a space requirement of Ω(nd̄

P)
for storing disjoint portion of the partition. Storing the whole
partition requires Ω(xnd̄

P) or Ω(xm
P) space, where 1 ≤ x ≤ d̄,

which can be as large as the whole network O(m).
Our space-efficient parallel algorithm divides the input

networks into non-overlapping partitions. The load balancing
procedure makes sure that the computational cost is almost
equal in each partition. We also observe experimentally that
the largest partition has approximately m

P edges. The sizes of
all partitions sum up to the size of the network. This parti-
tioning offers as much as d̄ times saving over the overlapping
partitions and thus allows to work on larger networks. Table
II shows the space requirement of our algorithm for several
real and artificial networks, which is up to 25× smaller than
that of [15].

TABLE II
MEMORY USAGE OF OUR ALGOIRTHM AND [15] FOR STORING THE

LARGEST PARTITION. NUMBER OF PARTITIONS USED IS 100.

Networks Memory (MB) Ratio d̄ dmaxOur algo. [15]
web-Google 1.49 11.3 7.85 11.6 6332
LiveJournal 9.41 110.75 11.75 18 20333
Miami 10.63 109.58 10.32 47.6 425
Twitter 265.82 4254.18 16.004 57.1 1001159
PA(10M, 100) 121.11 2120.94 17.5 100 25068
PA(1M, 1000) 138.20 3427.36 24.8 1000 19255

We present our parallel algorithm in the following section.

IV. A SPACE EFFICIENT PARALLEL ALGORITHM

First, we present an overview of the algorithm. A detailed
description follows thereafter.

A. Overview of the Algorithm.

Our algorithm partitions the input network G(V,E) into
a set of P partitions constructed as follows: set of nodes
V is partitioned into P disjoint subsets Vi, such that, for
0 ≤ j, k ≤ P − 1 and j 6= k, Vj ∩ Vk = ∅ and

⋃
k Vk = V .

Edge set Ei, constructed as Ei = {(u, v) : u ∈ Vi, v ∈ Nu},
constitutes the i-th partition. Note that this partition is non-
overlapping– each edge (u, v) ∈ E resides in one and only

one partition. For 0 ≤ j, k ≤ P−1 and j 6= k, Ej∩Ek = ∅ and⋃
k Ek = E. The sum of space required to store all partitions

equals to the space required to store the whole network.
Processor pi works on the i-th partition and is responsible
for having all triangles incident on nodes v ∈ Vi counted.
Now, to count triangles incident on v ∈ Vi, pi needs Nu for
all u ∈ Nv (Lines 7-10, Fig. 1). If u ∈ Vi, information of
both Nv and Nu is available in the i-th partition, and pi
counts triangles incident on (v, u) by computing Nu ∩ Nv .
However, if u ∈ Vj , j 6= i, Nu resides in partition j. Processor
pi and pj exchange message(s) to count triangles incident
on such (v, u). This exchanging of messages introduces a
communication overhead which is a crucial factor for the
performance of the algorithm. We devise an efficient approach
to reduce the communication overhead drastically and improve
the performance significantly. Once all processors complete
the computation associated with respective partitions, the
counts from all processors are aggregated.

B. Computing Partitions.

While constructing partitions i, set of nodes V is partitioned
into P disjoint subsets Vi of consecutive nodes. How the nodes
in V are distributed among the sets Vi for all partitions i
crucially affect the performance of the algorithm. Distributing
equal number of nodes for each partition might not make
computational load even among the processors. Ideally, the
set V should be partitioned in such a way that the cost for
counting triangles is almost equal for all partitions. Let, f(v)
be a weight function referring to the cost for counting triangles
incident on v ∈ V (cost for executing Line 7-10, Fig. 1). We
need to compute P disjoint partitions of V such that for each
partition Vi, ∑

v∈Vi

f(v) ≈ 1

P

∑
v∈V

f(v). (3)

Several estimations for f(v) were proposed in [15] among
which f(v) =

∑
u∈Nv

(d̂v + d̂u) was shown experimentally as
the best. Since our algorithm employs a different communica-
tion scheme for counting triangles, none of those estimations
corresponds to the cost of our algorithm. Thus, we compute a
new weight function f(v) to estimate the computational cost
of our algorithm more precisely in Section V-B (Theorem 2).

Once f(v) is computed for all v ∈ V , we compute
cumulative sum F (t) =

∑t
v=0 f(v) in parallel by using a

parallel prefix sum algorithm [25]. Processor pi computes
and stores F (t) for nodes t, where t starts from in

P to
(i+1)n

P − 1. This computation takes O(n
P + P) time. Now,

let Vi = {ni, ni + 1 . . . , n(i+1) − 1} for some node ni ∈ V .
We call ni the start or boundary node of partition i. Now, Vi

is computed in such a way that the sum
∑

v∈Vi
f(v) becomes

almost equal (1
P

∑
v∈V f(v)) for all partitions i. At the end

of this execution, each processor pi knows boundary nodes
ni and n(i+1). We adapt the algorithm presented in [15] to
compute Vi for our problem by using our newly computed
cost function f(v). In summary, computing partitions has the
following main steps.

• Step 1: Compute a new cost function f(v) which cor-
responds to the triangle counting cost of our algorithm
(Section V-B).

• Step 2: Compute cumulative sum F (v) by a parallel
prefix sum algorithm [25].

• Step 3: Compute boundary nodes ni for every subset Vi =
{ni, . . . , n(i+1) − 1} using the algorithms in [15].

Once all P partitions are computed, processor pi is assigned
the partition Vi.

C. Counting Triangles with An Efficient Communication Ap-
proach.

As discussed in the overview of our algorithm, processor
pi and pj require to exchange messages for counting triangles
incident on (v, u) where v ∈ Vi and u ∈ Nv ∩ Vj . A straight-
forward approach for this communication might be very inef-
ficient. For example, in a simple way, such triangles can be
counted as follows: pi requests pj for Nu. Upon receiving
the request, pj sends Nu to pi. Processor pi counts triangles
incident on the edge (v, u) by computing Nv∩Nu. For further
reference, we call this approach as ‘Direct approach’.

We observe that this approach has a high communication
overhead due to exchanging a large number of redundant
messages leading to a large runtime. Assume u ∈ Nv1∩Nv2∩
· · · ∩ Nvk , for v1, v2, . . . , vk ∈ Vi. Then pi sends k separate
requests for Nu to pj while computing triangles incident on
v1, v1, . . . , vk. In response to those requests, pj sends same
message Nu to pi for k times.

One seemingly obvious way to eliminate redundant mes-
sages is that instead of requesting Nu multiple times, pi stores
it in memory for subsequent use. However, space requirement
for storing all Nu along with the partition i itself is same as
that of storing an overlapping partition. This diminishes our
original goal of a space-efficient algorithm.

Another way of eliminating message redundancy is as
follows. When Nu is fetched, pi completes all computation
that requires Nu: pi finds all k nodes v ∈ Vi such that u ∈ Nv .
It then performs all k computations Nv ∩ Nu involving Nu

and discards Nu. Now, since u ∈ Nv ⇐⇒ v /∈ Nu, pi
cannot extract such k nodes v from the message Nu. Instead,
pi requires to scan through its whole partition to find such
nodes v where u ∈ Nv . This scanning is very expensive–
O(
∑

v∈Vi
dv) in the worst case for each message– which

might even be slower than the direct approach with redundant
messages.

All the above techniques to improve the efficiency of Direct
approach introduce additional space or runtime overhead. Next
we propose an efficient approach which exploits an inherent
property of our data structure Nv to reduce message exchanges
drastically without adding further overhead.

Reduction of messages. As discussed before, pi cannot
count triangles on (v, u) for v ∈ Vi and u ∈ Nv ∩ Vj without
fetching Nu from partition j. Now, we take a different view-
point: we ask the question, what is the implication for pi
delegating the computation Nv∩Nu to pj instead of doing by
itself? In particular, we consider the following approach: pi

sends Nv to pj instead of fetching Nu. Processor pj counts
triangles incident on edge (u, v) by performing the operation
Nv ∩Nu.

We call this approach as Surrogate approach. On a surface,
this might seem to be a simple modification from Direct
approach. However, notice the following implication which
is very significant to the algorithm: once pj receives Nv , it
can extract the information of all nodes u, such that u is in
both Nv and Vj , by just scanning Nv . For all such nodes u,
pj counts triangles incident on edge (u, v) by performing the
operation Nv∩Nu. Processor pj then discard Nv since it is no
longer needed. Note that extracting all u such that u ∈ Nv and
u ∈ Vj requires O(dv) time (compare this to O(

∑
v∈Vi

dv)
runtime of direct approach for the similar purpose). In fact,
this extraction can be done while computing triangles Nv∩Nu

for first such u. This saves from any additional overhead.
As we noticed, if delegated, pj can count triangles on

multiple edges (u, v) from a single message Nv , where v ∈ Vi

and u ∈ Nv ∩ Vj . Thus pi does not require to send Nv to pj
multiple times for each such u. However, to avoid multiple
sending, pi needs to keep track of which processors it has
already sent Nv to. This message tracking is also crucial since
any additional space or runtime overhead might compromise
the efficiency of the overall approach.

It is easy to see that one can perform the above tracking by
maintaining P flag variables, one for each processor. Before
sending Nv to a particular processor pj , pi checks j-th flag
to see if it is already sent. All flags are initially reset to
zero. This implementation is conceptually simple but cost for
resetting flags for each v ∈ Vi sums to a significant cost of
O(|Vi|.P). Now, note the following simple yet useful property
of Nv: Since Vj is a set of consecutive nodes, and all neighbor
lists Nv are sorted, all nodes u ∈ Nv ∩ Vj reside in Nv in
consecutive positions.

The above property enable each pi to track messages by
only recording the last processor (say, LastProc) it has sent
Nv to. When pi encounters u ∈ Nv such that u ∈ Vj , it checks
LastProc. If LastProc 6= pj , then pi sends Nv to pj and set
LastProc = pj . Otherwise, the node u is ignored, meaning it
would be redundant to send Nv . Resetting a single variable
LastProc for all computation involving Nv does not introduce
any additional overhead.

Thus surrogate approach detects and eliminates message
redundancy and allows multiple computation from a single
message, without even compromising execution or space ef-
ficiency. The efficiency gained from this capability is shown
both theoretically and experimentally in Section V and VI,
respectively.

D. Pseudocode for Counting Triangles.

We denote a message by 〈t,X〉 where t ∈ {data, notifier}
is the type and X is the actual data associated with the mes-
sage. For a data message (t = data), X refers to a neighbor list
Nx whereas for a completion notifier (t = notifier), X = ∅.
The pesudocode for counting triangles for an incoming data
message 〈data,X〉 is given in Fig. 2.

1: Procedure SURROGATECOUNT(X, i) :
2: T ← 0 //T is the count of triangles
3: for all u ∈ X such that u ∈ Vi do
4: S ← Nu ∩X
5: T ← T + |S|
6: return T

Fig. 2. A procedure executed by pi to count triangles for the received
message 〈data,X〉 from some pj in accordance to surrogate approach.

Once a processor pi completes the computation on all v ∈
Vi, it broadcasts a completion notifier 〈notifier,X〉. However,
it cannot terminate execution until it receives 〈notifier,X〉
from all other processors since other processors might send
data messages for surrogate computation. Finally, p0 sums up
counts from all processors using MPI aggregation function.
The complete pseudocode of our algorithm using surrogate
approach is presented in Fig. 3.

1: Ti ← 0 //Ti is pi’s count of triangles
2: for v ∈ Vi do
3: for u ∈ Nv do
4: if u ∈ Vi then
5: S ← Nv ∩Nu

6: Ti ← Ti + |S|
7: else if u ∈ Vj then
8: Send 〈data,Nv〉 to pj if not sent already
9:

10: Check for incoming messages 〈t,X〉:
11: if t = data then
12: Ti ← Ti+ SURROGATECOUNT(X, i)
13: else
14: Increment completion counter
15:
16: Broadcast 〈notifier,X〉
17: while completion counter < P-1 do
18: Check for incoming messages 〈t,X〉:
19: if t = data then
20: Ti ← Ti+ SURROGATECOUNT(X, i)
21: else
22: Increment completion counter
23:
24: MPIBARRIER
25: Find Sum T ←

∑
i Ti using MPIREDUCE

26: return T

Fig. 3. An algorithm for counting triangles using surrogate approach. Each
processor pi executes Line 1-22. After that, they are synchronized and the
aggregation is performed (Line 24-26).

V. THEORETICAL ANALYSIS

We present the theoretical justification for efficiency and
correctness of our algorithm in this section.

A. Correctness of The Algorithm.

The correctness of our space efficient parallel algorithm is
formally presented in the following theorem.

Theorem 1. Given a graph G = (V,E), our space efficient
parallel algorithm correctly counts exact number of triangles
in G.

Proof: Consider a triangle (x1, x2, x3) in G, and without
the loss of generality, assume that x1 ≺ x2 ≺ x3. By the
constructions of Nx (Line 1-3 in Fig. 1), we have x2, x3 ∈ Nx1

and x3 ∈ Nx2
. Now, there might be two cases:

1. Case x1, x2 ∈ Vi:
Nodes x1 and x2 are in the same partition i. Processor pi
executes the loop in Line 2-6 (Fig. 3) with v = x1 and
u = x2, and node x3 appears in S = Nx1 ∩ Nx2 , and
the triangle (x1, x2, x3) is counted once. But this triangle
cannot be counted for any other values of v and u because
x1 /∈ Nx2

and x1, x2 /∈ Nx3
.

2. Case x1 ∈ Vi, x2 ∈ Vj , i 6= j:
Nodes x1 and x2 are in two different partitions, i and j,
respectively, without the loss of generality. Processor pi
attempts to count the triangle executing the loop in Line
2-6 with v = x1 and u = x2. However, since x2 /∈ Vi, pi
sends Nx1

to pj (Line 8). Processor pj counts the triangle
while executing the loop in Line 10-12 with X = Nx1 ,
and node x3 appears in S = Nx2 ∩Nx1 (Line 2 in Fig. 2).
This triangle can never be counted again in any processor,
since x1 /∈ Nx2

and x1, x2 /∈ Nx3
.

Thus, in both cases, each triangle in G is counted once and
only once. This completes our proof.

B. Computing An Estimation for Weight Function f(v).

Our computation of balanced partitions in Section IV-B
requires an estimation of the cost f(v) which we compute
from the following theorem.

Theorem 2. The cost for counting triangles attributed to node
v ∈ Vi is given by O

(∑
u∈Nv−Nv

(d̂v + d̂u)
)

.

Proof: We have the following definitions from Section II
and III, respectively: Nv = {u : (u, v) ∈ E} and Nv = {u :
(u, v) ∈ E, v ≺ u}. Then, it is easy to see,

u ∈ Nv −Nv ⇔ v ∈ Nu. (4)

To estimate the cost for counting triangles incident on node
v ∈ Vi, consider the cost for counting triangles incident on all
edges (v, u) such that u ∈ Nv . There might be two cases:

1. Case u ∈ Nv −Nv: This case implies v ∈ Nu (by Eqn.
4). There might be two sub-cases:

– If u ∈ Vj for j 6= i, pj sends Nu to pi, and pi counts
triangle by computing Nu ∩Nv (Fig. 2).

– If u ∈ Vi, pi counts triangle by computing Nu ∩Nv

while executing the loop in Line 2-6 in Fig. 3 for
node u.

Thus for both sub-cases pi computes triangles incident
on (v, u). All such nodes u impose a computation cost
of O

(∑
u∈Nv−Nv

(d̂v + d̂u)
)

on pi for node v.
2. Case u ∈ Nv: This case implies v ∈ Nu −Nu (by Eqn.

4) which is same as case 1 with u and v interchanged. By
a similar argument of case 1, the imposed computation
cost for such (v, u) is attributed to node u.

Thus the cost attributed to node v for counting triangles on all
edges (v, u), for u ∈ Nv , is O

(∑
u∈Nv−Nv

(d̂v + d̂u)
)

.
Theorem 2 gives us the intended function f(v) =∑
u∈Nv−Nv

(d̂v + d̂u) which we use in our partitioning step.
We present an experimental evaluation comparing the best
function presented in [15] with ours in Section VI.

C. Cost of Message Passing in Direct and Surrogate Ap-
proaches.

For v ∈ Vi, assume Cv is the set of edges (v, u) ∈ E such
that u /∈ Vi, i.e., (v, u) is a cut edge. Next let Xi =

⋃
v∈Vi

Cv

is the set of all cut edges emanating from partition i, and
xi = |Xi|.

We present the communication cost incurred by Direct
approach in the following lemma.

Lemma 1. For Direct approach, the cost Wdir of exchanging
messages by processor pi is given by,

O

∑
v∈Vi

∑
0≤j≤P−1,

j 6=i

 ∑
u:u∈Nv,
u∈Vj

(d̂u + 1) +
∑

u:v∈Nu,
u∈Vj

(d̂v + 1)

 .

Proof: For a cut edge (v, u) with v ∈ Vi, the first term
in each of the innermost summations accounts for the cost
O(|Nu|) = O(d̂u) of receiving Nu (for v ≺ u) or the cost
O(|Nv|) = O(d̂v) of sending Nv (for u ≺ v) and the second
term for the cost O(1) of a request message.

Let lvj is the number of cut edges emanating from node v
to some nodes u in partition j with v ≺ u. Now the following
lemma states the communication cost incurred by Surrogate
approach.

Lemma 2. For Surrogate approach, the cost Wsur of exchang-
ing messages by processor pi is given by,

O

∑
v∈Vi

∑
0≤j≤P−1,

j 6=i

 ∑
u:u∈Nv,
u∈Vj

d̂v
lvj

+
∑

u:v∈Nu,
u∈Vj

d̂u
lui

 .

Proof: For node v ∈ Vi, all cut edges (v, u) with u ∈ Vj

and v ≺ u, Nv is sent to pj at most once instead of lvj
times. Thus each such (v, u) is attributed to 1

lvj
-fraction of the

sending cost O(d̂v), which is accounted by the first innermost
summation term. For all edges (v, u) with u ≺ v, pi receives
Nu from pj at most once instead of lui times. This receiving
cost incurred on pi for each such edge (v, u) is accounted by
the second innermost summation term.

Comparison of costs. To get a crude estimate of how
these two quantities (in Lemma 1 and 2) compare, we replace
degrees d̂v , for all v ∈ Vi, by the average degree d̄ and number
of cut edges from v to partition j with v ≺ u, lvj , by l (an
average over all lvj). Then we get, the communication cost
for Surrogate approach, Wsur:

O

∑
v∈Vi

∑
0≤j≤P−1,

j 6=i

 ∑
u:u∈Nv,
u∈Vj

d̄

l
+

∑
u:v∈Nu,
u∈Vj

d̄

l

= O

∑
v∈Vi

∑
u:(v,u)∈Cv

d̄

l

 [by the Defn. of Cv]

= O

(∑
v∈Vi

|Cv|d̄
l

)
= O

(
|Xi|d̄
l

)
= O

(
xid̄

l

)
.

The second last step follows from Xi =
⋃

v∈Vi
Cv . Similarly,

we get, communication cost for Direct approach, Wdir:

O
(∑

(v,u)∈Xi

(
d̄ + 1

))
= O

(
|Xi|d̄ + |Xi|

)
= O

(
xid̄ + xi

)
.

Since Wdir

Wsur
> l, the surrogate approach has at least l times

smaller communication cost than that of the direct approach.
As shown in Table II, the values of l range approx. from 4
to 10 for the networks we experimented on, and the surrogate
approach reduces approx. 70% to 90% of messages.

TABLE III
NUMBER OF MESSAGES EXCHANGED IN DIRECT AND SURROGATE

APPROACHES.

Networks # of Messages
Ratio l(avg)Direct Surrogate

Miami 16, 321, 478 3, 987, 871 4.09 3.89
web-Google 493, 488 99, 221 4.97 5.01
LiveJournal 23, 138, 824 4, 002, 575 5.78 5.43
Twitter 247, 821, 246 25, 341, 984 9.78 5.78
PA(10M, 100) 99, 436, 823 8, 092, 340 12.29 5.92

D. Complexity of the Algorithm.

Runtime Complexity. Computing balanced partition takes
O(m

P + P) time using an adaptation of the partitioning
algorithm given in [15]. The worst case cost for counting
triangles is O(

∑
v∈Vi

∑
u∈Nv−Nv

(d̂u + d̂v)) (Fig. 3). Let
wi be the communication cost incurred on pi (as shown
in Lemma 2). The summing up of counts require O(logP)
time using MPI aggregation function. Thus, the time com-
plexity of our parallel algorithm is, O

(
m
P + P + maxi wi +

maxi

∑
v∈Vi

∑
u∈Nv−Nv

(d̂u + d̂v)
)
.

Space Complexity. The size of the largest partition is
O(maxi{|Vi| + |Ei|}). Further, to store a single incoming
or outgoing message containing Nv requires a space of
O(maxv∈V |Nv|) = O(d̂max). Thus, the total space complex-
ity of our algorithm is O(maxi{|Vi| + |Ei|} + d̂max). With
the non-overlapping partitioning along with the load balancing
scheme, we observe experimentally that the largest partition
has approx. m

P edges. A comparison of space complexity of
other related algorithms is provided in Table IV. Our algorithm
achieves up to O(P 2)-factor space efficiency over MapReduce
based algorithms [12], [17], [18] and approx. d̄-factor over the
algorithm with overlapping partitioning [15].

VI. EXPERIMENTAL EVALUATION

We perform our experiments using a high performance
computing cluster with 64 computing nodes (QDR InfiniBand

TABLE IV
A COMPARISON OF SPACE COMPLEXITY AMONG RELATED ALGORITHMS.

Algorithms Space complexity Remarks
Suri et al. [12] O(mP) size of Map output
Park et al. [17] O(mP) size of Map output
PATRIC [15] Ω(xm

P
), 1 ≤ x ≤ d̄ for each processor

Our algo. O(maxi{|Vi|+ |Ei|}+ d̂max) ≈ m
P

edges/proc.

interconnect), 16 processors (Sandy Bridge E5-2670, 2.6GHz)
per node, memory 4GB/processor, and operating system Cen-
tOS Linux 6. The experimental evaluation of the performance
our space-efficient parallel algorithm is presented below.

Comparison with Previous Algorithms. The algorithm in
[15] employs an overlapping partitioning and thus doesn’t re-
quire message passing for counting triangles leading to a very
fast algorithm (Table V). The non-overlapping partitioning
employed by our algorithm achieves huge space saving over
[15] (Table II), albeit requiring message passing for counting
triangles. Our proposed communication approach (surrogate)
reduces communication cost quite significantly leading to
an almost similar runtime efficiency to [15]. In fact, our
algorithm loses only ∼20% runtime efficiency for the gain of
a significant space efficiency of up to 2500%, thus allowing
to work on larger networks.

A runtime comparison among other related algorithms for
counting triangles in Twitter network is given in Fig. 4. Our
algorithm is 35× faster than [12], 17× than [17], 7× than
[18], and almost as fast as [15].

TABLE V
RUNTIME PERFORMANCE OF OUR ALGORITHM AND THE ALGORITHM IN

[15]. WE USED 200 PROCESSORS FOR THIS EXPERIMENT.

Networks Runtime Triangles[15] Direct Surrogate
web-BerkStan 0.10s 3.8s 0.14s 65M
Miami 0.6s 4.79s 0.79s 332M
LiveJournal 0.8s 5.12s 1.24s 286M
Twitter 9.4m 35.49m 12.33m 34.8B
PA(1B, 20) 15.5m 78.96m 20.77m 0.403M

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Suri et al. [12] Park et al. [17] Park et al. [18] PATRIC [15] Our Algo.

R
u
n
ti

m
e

(m
in

u
te

s)

Algorithms

Runtime Performance on Twitter

Fig. 4. Runtime reported by various algorithms for counting triangles in
Twitter network.

Strong Scaling. Fig. 5 shows strong scaling (speedup)
of our algorithm on Miami, LiveJournal, and web-BerkStan
networks with both direct and surrogate approaches. Speedup
factors with the surrogate approach are significantly higher
than that of the direct approach due to its capability to reduce
communication cost drastically. Our algorithm demonstrates
an almost linear speedup to a large number of processors.

Further, our algorithm scales to a higher number of proces-
sors when networks grow larger, as shown in Fig. 6. This is, in
fact, a highly desirable behavior since we need a large number
of processors when the network size is large and computation
time is high.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

S
p

ee
d

u
p

 F
ac

to
r

Number of Processors

Miami (Surrogate)
Miami (Direct)

LiveJournal (Surrogate)
LiveJournal (Direct)
Twitter (Surrogate)

Twitter (Direct)

Fig. 5. Speedup factors of our algorithm with both
direct and surrogate approaches.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

S
p

ee
d

u
p

 F
ac

to
r

Number of Processors

PA(25M,100)
PA(20M,100)
PA(10M,100)

Fig. 6. Improved scalability of our algorithm with
increasing network size.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

S
p

ee
d

u
p

 F
ac

to
r

Number of Processors

Miami, New f(v)
Miami, f(v) [15]

LiveJournal, New f(v)
LiveJournal, f(v) [15]

Twitter, New f(v)
Twitter, f(v) [15]

Fig. 7. Comparison of new estimation function of
our algorithm and the best function of [15].

Effect of Estimation for f(v). We show the performance
of our algorithm with new weight function (computed in
Section V-B), f(v) =

∑
u∈Nv−Nv

(d̂v + d̂u), and the best
function f(v) =

∑
u∈Nv

(d̂v + d̂u) reported in [15]. As Fig.
7 shows, our algorithm with new weight function provides
better speedup than that of [15]. Our new f(v) estimates the
computational cost more precisely and helps compute balanced
partitions (Eqn. 3), which leads to better speedup.

Weak Scaling. Weak scaling of a parallel algorithm mea-
sures its ability to maintain constant computation time when
the problem size grows proportionally with processors. The
weak scaling of our algorithm is shown in Fig. 8. Since the
addition of processors causes the overhead for exchanging
messages to increase, the runtime of the algorithm increases
slowly. However, as the change in runtime is rather slow (not
drastic), our algorithm demonstrates a reasonably good weak
scaling.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

T
im

e
R

eq
u
ir

ed
 (

se
c)

Number of Processors

Total Triangle Couting Time

Fig. 8. Weak scaling of our algorithm, experiment performed on PA(t/10 ∗
1M, 50) networks, t = number of processors used.

VII. CONCLUSION

We present a space-efficient parallel algorithms for counting
exact number of triangles in massive networks. The algorithm
employs non-overlapping partitions and reduces the space
requirement significantly leading to the ability to work on
larger networks. An efficient communication approach reduces
message passing drastically to provide a fast algorithm. Our
computation of a novel weight function for a parallel partition-
ing scheme adds further to the efficiency of the algorithm. We
also provide a comprehensive theoretical analysis to justify the
performance of the algorithm. We believe that for emerging
massive networks, this algorithm will prove very useful.

Acknowledgments. This work has been partially supported
by DTRA Grant HDTRA1-11-1-0016, DTRA CNIMS Contract
HDTRA1-11-D-0016-0001, NSF NetSE Grant CNS-1011769, NSF
SDCI Grant OCI-1032677, and NSF DIBBs Grant ACI-1443054.

REFERENCES

[1] S. Chu and J. Cheng, “Triangle listing in massive networks and its
applications,” in KDD, 2011.

[2] L. Becchetti et al., “Efficient semi-streaming algorithms for local triangle
counting in massive graphs,” in KDD, 2008.

[3] J. Eckmann and E. Moses, “Curvature of co-links uncovers hidden
thematic layers in the world wide web,” Proc. Natl. Acad. of Sci. USA,
vol. 99, no. 9, pp. 5825–5829, 2002.

[4] Z. Bar-Yosseff et al., “Reductions in streaming algorithms, with an
application to counting triangles in graphs,” in Proc. of SODA, 2002.

[5] A. Prat-Pérez et al., “Shaping communities out of triangles,” in CIKM,
2012.

[6] A. Broder et al., “Graph structure in the web,” Computer Networks,
vol. 33, no. 16, pp. 309 – 320, 2000.

[7] H. Kwak et al., “What is twitter, a social network or a news media?”
in WWW, 2010.

[8] M. Girvan and M. Newman, “Community structure in social and
biological networks,” Proc. Natl. Acad. of Sci. USA, vol. 99, no. 12,
pp. 7821–7826, Jun. 2002.

[9] J. Ugander et al., “The anatomy of the facebook social graph,” CoRR,
vol. abs/1111.4503, 2011.

[10] T. Schank, “Algorithmic aspects of triangle-based network analysis,”
Ph.D. dissertation, University of Karlsruhe, 2007.

[11] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theor. Comput. Sci., vol. 407, pp. 458–473, 2008.

[12] S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last
reducer,” in WWW, 2011.

[13] M. Jha et al., “A space efficient streaming algorithm for triangle counting
using the birthday paradox,” in KDD, 2013.

[14] C. Seshadhri, A. Pinar, and T. Kolda, “Triadic measures on graphs: the
power of wedge sampling,” in SDM, 2013.

[15] S. Arifuzzaman, M. Khan, and M. Marathe, “PATRIC: A parallel
algorithm for counting triangles in massive networks,” in CIKM, 2013.

[16] T. G. Kolda et al., “Counting triangles in massive graphs with mapre-
duce,” CoRR, vol. abs/1301.5887, 2013.

[17] H.-M. Park and C.-W. Chung, “An efficient mapreduce algorithm for
counting triangles in a very large graph,” in CIKM, 2013.

[18] H.-M. Park et al., “Mapreduce triangle enumeration with guarantees,”
in CIKM, 2014.

[19] Zoltan. http://www.cs.sandia.gov/zoltan/.
[20] D. Gleich and C. Seshadri, “Vertex neighborhoods, low conductance

cuts, and good seeds for local community methods,” in KDD, 2012.
[21] C. Barrett et al., “Generation and analysis of large synthetic social

contact networks,” in WSC, 2009.
[22] A. Barabasi and R. Albert, “Emergence of scaling in random networks,”

Science, vol. 286, pp. 509–512, 1999.
[23] Snap. http://snap.stanford.edu/.
[24] Twitter. http://an.kaist.ac.kr/∼haewoon/release/twitter social graph.
[25] S. Aluru, “Teaching parallel computing through parallel prefix,” in SC,

2012.

