
PATRIC: A Parallel Algorithm for Counting Triangles in
Massive Networks∗

Shaikh Arifuzzaman†‡, Maleq Khan‡, and Madhav Marathe†‡†Department of Computer Science‡NDSSL, Virginia Bioinformatics Institute
Virginia Tech, Blacksburg, VA 24061, USA

{sm10, maleq, mmarathe}@vbi.vt.edu

ABSTRACT
Massive networks arising in numerous application areas poses
significant challenges for network analysts as these networks
grow to billions of nodes and are prohibitively large to fit
in the main memory. Finding the number of triangles in a
network is an important problem in the analysis of complex
networks. Several interesting graph mining applications de-
pend on the number of triangles in the graph. In this paper,
we present an efficient MPI-based distributed memory paral-
lel algorithm, called PATRIC, for counting triangles in mas-
sive networks. PATRIC scales well to networks with billions
of nodes and can compute the exact number of triangles in
a network with one billion nodes and 10 billion edges in 16
minutes. Balancing computational loads among processors
for a graph problem like counting triangles is a challenging
issue. We present and analyze several schemes for balancing
load among processors for the triangle counting problem.
These schemes achieve very good load balancing. We also
show how our parallel algorithm can adapt an existing edge
sparsification technique to approximate the number of tri-
angles with very high accuracy. This modification allows us
to count triangles in even larger networks.
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1. INTRODUCTION
Today, data from diverse fields are modeled as graphs

because of their convenience in representing underlying re-
lations and structures [11]. Some significant examples are
the Web, various social networks, e.g., Facebook, Twitter
[17], collaboration and co-authorship networks [21], infras-
tructure networks (e.g., transportation networks) and many
forms of biological networks [15]. Due to the advancement
in technology, we are deluged with data from a wide range
of areas such as business and finance [3], computational bi-
ology [9] and social science. As Google reported in 2008, the
Web graph has over 1 trillion webpages. Most of the social
networks, such as, Twitter, Facebook, and MSN, have mil-
lions to billions of users [10]. To analyze these huge data rep-
resented by massive networks, parallel algorithms are nec-
essary. Furthermore, such massive networks pose another
challenge of a large memory requirement. These graphs do
not fit in the main memory of a single processing unit, and
the algorithms must be able to work on a small part of the
graph at a time.

Here, we study the problem of counting triangles in mas-
sive networks that do not fit in the main memory of a sin-
gle computing node. We present an MPI-based distributed
memory parallel algorithm for this problem, which scales
well to networks with billions of nodes and edges. Counting
triangles in a network is an important algorithmic problem
arising in the study of complex networks. Efficient solution
to the trainagle counting problem can also lead to efficient
solutions for many other graph theoretic problems, e.g. com-
putation of clustering coefficient, transitivity, and triangular
connectivity [10, 11, 20]. Existence of triangles and the re-
sulting high clustering coefficient in a social network reflect
the common theory of social science where people who have
common friends tend to be friends themselves [19]. Also, tri-
angle counting has important applications in graph mining.
Recently, it has been used to detect spamming activity and
assess content quality in social networks [7], to uncover the-
matic structure of the web [14], query planning optimization
in databases [4], etc.

The problem of counting triangles, and almost equiva-
lently computing the clustering coefficients of the nodes in
a graph, has a rich history [2,18,22–25,28]. Both exact and
approximate algorithms for this problem can be found in
the literature. Much of the earlier work are mainly based on
matrix multiplication and adjacency matrix representation
of the network. These matrix based algorithms [2, 12] are
not useful in the analysis of social networks as adjacency
matrix representation of network requires O(n2) memory



space, where n is the number of nodes in the network –
even for medium sized networks, say a graph with a few
hundred thousand nodes, such an amount of space can be
prohibitively large. As a result, in the last decade the focus
has been shifted to algorithms that use adjacency list rep-
resentation [18, 22–25, 28], which takes O(m) memory. In a
real-world network, m can be much smaller than n2 as the
average degree of a node can be significantly smaller than
n, although few of the nodes can have very large degrees.
Although substantial research has been done on the tri-

angle counting problem, much less attention was given, un-
til recently, to the problems associated with massive net-
works that do not fit in the main memory of a single pro-
cessor. Several techniques can be employed to deal with
such massive networks: streaming algorithms, sparsifica-
tion based algorithms, external-memory algorithms, and dis-
tributed memory parallel algorithms. The streaming and
sparsification based techniques provide approximation algo-
rithms whereas external-memory and parallel algorithms can
be used to find exact solutions.
Streaming algorithms [4, 7, 16] perform a constant num-

ber of passes, in some cases O(log n) passes, over the data
streams and make an estimation of the number of trian-
gles. Recently, two elegant algorithms based on sparsifica-
tion were presented in [28] and [22]. These algorithms store
only a randomly chosen subset of the edges in the memory.
Then the number of triangles in the original network is es-
timated based on the number of triangles in this sparsed
graph. Although the estimation for the total triangle counts
can be reasonably good for some applications, the accuracy
for the local triangle counts and clustering coefficients of the
individual nodes can have larger errors.
To the best of our knowledge, very few papers have ad-

dressed the problems associated with massive networks that
do not fit in the main memory and provide an exact solution.
A recent paper [10] presents an external-memory algorithm
to find the exact number of triangles in a network. Although
this algorithm provides an impressive solution to working
with massive networks, external-memory algorithms can be
very I/O intensive leading to a large running time. Only
a parallel algorithm can solve the problem of such a large
running time by distributing computing tasks to multiple
processors.
Another recent paper [27] presents a parallel algorithm for

exact triangle counts using MapReduce framework [13]. Our
parallel algorithm improves the performance, both in time
and space, over [27] significantly. A detailed comparison
with this algorithm is given in Section 4. Our contributions
include:

• We present a parallel algorithm, called PATRIC, for
counting triangles in massive networks. PATRIC scales
almost linearly with the number of processors, and is
able to process a network with 1 billion nodes and 10
billion edges in 16 minutes using 40 processors. We
show the performance of PATRIC by using both arti-
ficial and real-world networks.

• We show, both theoretically and experimentally, a sim-
ple modification of a current state of the art sequential
algorithm for counting triangles improves its perfor-
mance and use this modified algorithm in the develop-
ment of PATRIC.

• We devise and analyze several load balancing schemes
to improve PATRIC’s efficiency. With these schemes,
we achieve very good load balancing, even for networks
with skewed degree distributions.

• We show how the sparsification technique presented
in [28] can be adapted in our parallel algorithm to have
a parallel approximation algorithm. This sparsification
technique allows our parallel algorithm to work with
even larger networks. Moreover, our parallel sparsi-
fication improves the accuracy of the approximation
over the sequential sparsificaiton of [28].

The rest of the paper is organized as follows. The prelim-
inary concepts, notations and datasets are briefly described
in Section 2. In Section 3, we discuss sequential algorithms
for counting triangles. We present our parallel algorithm
PATRIC and the load balancing schemes in Section 4. The
parallelization of the sparsification technique is given in Sec-
tion 5.

2. PRELIMINARIES
The given network is denoted by G(V,E), where V and E

are the sets of vertices (nodes) and edges, respectively, with
m = |E| edges and n = |V | vertices labeled as 0, 1, 2, . . . , n−
1. We use the words node and vertex interchangeably. We
assume that the input graph is undirected. If (u, v) ∈ E,
we say u and v are neighbors of each other. The set of
all neighbors of v ∈ V is denoted by Nv, i.e., Nv = {u ∈
V |(u, v) ∈ E}. The degree of v is dv = |Nv|.

A triangle is a set of three nodes u, v, w ∈ V such that
there is an edge between each pair of these three nodes, i.e.,
(u, v), (v, w), (w, u) ∈ E. The number of triangles containing
node v (in other words, triangles incident on v) is denoted
by Tv. Notice that the number of triangles containing node
v is as same as the number of edges among the neighbors of
v, i.e., Tv = | {(u,w) ∈ E | u,w ∈ Nv} |. We use K, M and

B to denote thousands, millions and billions, respectively;

e.g., 1B stands for one billion.

Datasets. We used both real world networks and artifi-
cially generated networks. A summary of all the networks is
provided in Table 1. Twitter [17], web-BerkStan, LiveJour-
nal and Email-Enron [26] are real-world networks. Miami is
a synthetic, but realistic, social contact network [6] for Mi-
ami city: each node is a person from Miami city, and there
is an edge between two persons if they “physically” interact
with each other within a 24 hour period. Network Gnp(n, d)
is generated using the Erdős-Réyni random graph model [8],
also known as G(n, p) model, with n nodes and edge proba-
bility p = d

n−1
so that the expected degree of each node is d.

Network PA(n, d) is generated using preferential attachment
(PA) model [5] with n nodes and average degree d. PA(n, d)
has power-law degree distribution, which is a very skewed
distribution.

Computation Model. We develop parallel algorithms
for message passing interface (MPI) based distributed-memory
parallel systems, where each processor has its own local
memory. The processors do not have any shared memory,
one processor cannot directly access the local memory of
another processor, and the processors communicate via ex-
changing messages using MPI.

Experimental Setup. We perform our experiments us-
ing a computing cluster (Dell C6100) with 30 computing
nodes, 12 processors (Intel Xeon X5670, 2.93GHz) per node,



Table 1: Dataset used in our experiments

Network Nodes Edges Source
Email-Enron 37K 0.36M SNAP [26]
web-BerkStan 0.69M 13M SNAP [26]
Miami 2.1M 100M [6]
LiveJournal 4.8M 86M SNAP [26]
Twitter 42M 2.4B [17]
Gnp(n, d) n 1

2
nd Erdős-Réyni

PA(n, d) n 1
2
nd Pref. Attachment

1: T ← 0 {T stores the count of triangles}
2: for v ∈ V do
3: for u ∈ Nv and v ≺ u do
4: for w ∈ Nv and u ≺ w do
5: if (u,w) ∈ E then
6: T ← T + 1

Figure 1: Algorithm NodeIterator++, where ≺ is the degree
based ordering of the nodes defined in Equation 1.

memory 4GB/processor, and operating system SLES 11.1.
We evaluate the performance of our algorithms using both
real-world and artificial networks listed in Table 1. The
number of nodes in the real-world networks ranges from 37K
to 42M and the number of edges from 0.36M to 2.4B. Note
that web-BerkStan, LiveJournal and Twitter networks have
a very skewed degree distribution. For experiments on larger
networks, we rely on random PA(n, d) networks, with vary-
ing n and d, which allow us to experiment with varying net-
work sizes. Since PA(n, d) networks have extremely skewed
degree distribution, they make load balancing a challenging
task and give us a chance to measure the performance of our
algorithms in some of the worst case scenarios.

3. SEQUENTIAL ALGORITHMS
In this section, we discuss sequential algorithms for count-

ing triangles using adjacency list representation and show
that a simple modification to a state-of-the-art algorithm im-
proves both time and space complexity. Although the mod-
ification seems quite simple, and others might have used it
previously, our theoretical and experimental analyses of this
modification are new. To the best of our knowledge, our
analysis is the first to show that such simple modification
improves the performance significantly. This modification is
also used in our parallel algorithm PATRIC.
A simple but efficient algorithm [23, 27] for counting tri-

angles is: for each node v ∈ V , find the number of edges
among its neighbors, i.e., the number of pairs of neighbors
that complete a triangle with vertex v. In this method, each
triangle (u, v, w) is counted six times – all six permutations
of u, v, and w. Many algorithms exist [10,18,23,24,27], which
provide significant improvement over the above method. A
very comprehensive survey of the sequential algorithms can
be found in [18, 23]. One of the state of the art algorithms,
known as NodeIterator++, as identified in two very recent
papers [10, 27], is shown in Figure 1. Both [10] and [27] use
this algorithm as a basis of their external-memory algorithm
and parallel algorithm, respectively.

1: {Preprocessing: Step 2-6}
2: for each edge (u, v) do
3: if u ≺ v, store v in Nu

4: else store u in Nv

5: for v ∈ V do
6: sort Nv in ascending order
7: T ← 0 {T is the count of triangles}
8: for v ∈ V do
9: for u ∈ Nv do
10: S ← Nv ∩Nu

11: T ← T + |S|

Figure 2: Algorithm NodeIteratorN, a modification of
NodeIterator++.

This algorithm uses a total ordering ≺ of the nodes to
avoid duplicate counts of the same triangle. Any arbitrary
ordering of the nodes, e.g., ordering the nodes based on
their IDs, makes sure each triangle is counted exactly once –
counts only one among the six possible permutations. How-
ever, the algorithm NodeIterator++ incorporates an inter-
esting node ordering based on the degrees of the nodes, with
ties broken by node IDs, as defined below:

u ≺ v ⇐⇒ du < dv or (du = dv and u < v). (1)

This degree based ordering can improve the running time.
Let d̂v be the number of neighbors u of v such that v ≺ u.
We call d̂v the effective degree of v. Assuming Nvs, for all v,
are sorted and a binary search is used to check (u,w) ∈ E,

a running time O
(

∑

v
(d̂vdv + d̂2v log dmax)

)

can be shown,

where dmax = maxv dv. This running time is minimized
when d̂v values of the nodes are as close to each other as
possible, although, for any ordering of the nodes,

∑

v
d̂v =

m is invariant. Notice that in the degree-based ordering,
diversity of the d̂v values are reduced significantly.

We also observe that for the same reason, degree-based
ordering of the nodes helps keep the loads among the pro-
cessors balanced, to some extent, in a parallel algorithm.
We use this degree-based ordering in our parallel algorithm
PATRIC and discuss this issue in detail in Section 4.

A simple modification of NodeIterator++ is as follows:
perform comparison u ≺ v for each edge (u, v) ∈ E in a
preprocessing step rather than doing it while counting the
triangles. This preprocessing step reduces the total number
of ≺ comparisons to O(m) and allows us to use an efficient
set intersection operation. For each node v, set of neighbors
Nv is maintained in the memory; however, for each edge
(v, u), u is stored in Nv if and only if v ≺ u. The modified
algorithm NodeIteratorN is presented in Figure 2. All trian-
gles containing node v and any u ∈ Nv can be found by set
intersection Nu ∩Nv (Line 10 in Figure 2). The correctness
of NodeIteratorN is proven in Theorem 1.

Theorem 1. Algorithm NodeIteratorN counts each tri-

angle in G once and only once.

Proof. Consider a triangle (x1, x2, x3) in G, and with-
out the loss of generality, assume that x1 ≺ x2 ≺ x3. By
the constructions of Nx in the preprocessing step, we have
x2, x3 ∈ Nx1

and x3 ∈ Nx2
. When the loops in Line 8-9

begin with v = x1 and u = x2, node x3 appears in S (Line



10-11), and the triangle (x1, x2, x3) is counted once. But this
triangle cannot be counted for any other values of v and u
(in Line 8-9) because x1 /∈ Nx2

and x1, x2 /∈ Nx3
.

In NodeIteratorN, |Nv| = d̂v, the effective degree of v.
When Nv and Nu are sorted, Nu ∩Nv can be computed in

O(d̂u + d̂v) time. Then we have O
(

∑

v∈V
dvd̂v

)

time com-

plexity for NodeIteratorN as shown in Theorem 2, in con-

trast to O
(

∑

v
(d̂vdv + d̂2v log dmax)

)

for NodeIterator++.

Theorem 2. The time complexity of algorithm NodeIter-

atorN is O
(

∑

v∈V
dvd̂v

)

.

Proof. Time for the construction ofNv for all v isO
(
∑

v
dv

)

= O(m), and sorting these Nv requires O
(

∑

v
d̂v log d̂v

)

time. Now, computing intersection Nv ∩ Nu takes O(d̂u +

d̂v) time. Thus, the time complexity of NodeIteratorN is

O(m) +O
(

∑

v∈V
d̂v log d̂v

)

+O
(

∑

v∈V

∑

u∈Nv
(d̂u + d̂v)

)

= O
(

∑

v∈V
d̂v log d̂v

)

+O
(

∑

(v,u)∈E
(d̂u + d̂v)

)

= O
(

∑

v∈V
d̂v log d̂v

)

+O
(

∑

v∈V
dvd̂v

)

= O
(

∑

v∈V
dvd̂v

)

.

The second last step follows from the fact that for each
v ∈ V , term d̂v appears dv times in this expression.

Notice that set intersection operation can also be used
with NodeIterator++ by replacing Line 4-6 of NodeItera-
tor++ in Figure 1 with the following three lines as shown
in [10] (Page 674):

1: S ← Nv ∩Nu

2: for w ∈ S and u ≺ w do
3: T ← T + 1

However, with this set intersection operation, the run-
time of NodeIterator++ is O

(
∑

v
d2v

)

since |Nv| = dv in
NodeIterator++, and computing Nv ∩Nu takes O(du + dv)
time. Further, the memory requirement for NodeIteratorN
is half of that for NodeIterator++. NodeIteratorN stores
∑

v
d̂v = m elements in all Nv and NodeIterator++ stores

∑

v
dv = 2m elements. Here we would like to note that two

algorithms presented in [18, 24] take the same asymptotic
time complexity as NodeIteratorN. However, the algorithm
in [24] requires three times more memory than NodeItera-
torN. The algorithm in [18] requires more than twice the
memory as NodeIteratorN, maintains a list of indices for all
nodes, and the hidden constant in the runtime can be much
larger.
We also experimentally compare the performance of NodeIt-

eratorN and NodeIterator++ using both real-world and ar-
tificial networks. NodeIteratorN is significantly faster than
NodeIterator++ for these networks as shown in Table 2.

4. THE PARALLEL ALGORITHM
In this section, we present our parallel algorithm PATRIC

for counting triangles in massive networks.

4.1 Overview of the Algorithm
We assume that the network is massive and does not fit in

the local memory of a single computing node. Locally each
processor stores only a part of the network in its memory.

Table 2: Running time for sequential algorithms

Networks
Runtime (sec.)

Triangles
NodeIterator++ NodeIteratorN

Email-Enron 0.14 0.07 0.7M
web-BerkStan 3.5 1.4 64.7M
LiveJournal 106 42 285.7M
Miami 46.35 32.3 332M
PA(25M, 50) 690 360 1.3M
Gnp(500K, 20) 1.81 0.6 1308

Let P be the number of processors used in the computa-
tion. The network is partitioned into P partitions, and each
processor is assigned one such partition Gi(Vi, Ei) (formally
defined below). Processor i performs computation on its
partition Gi. The network data is given as input in a single
disk file. Each processor, in parallel, reads its own part of
the network (the necessary data to construct its own parti-
tion Gi) in its local memory. The main steps of PATRIC
are given in Figure 3. In the following subsections, we de-
scribe the details of these steps and several load balancing
schemes.

1: Each processor i, in parallel, executes the follow-
ing:(lines 2-4)

2: Gi(Vi, Ei)← ComputePartition(G, i)
3: Ti ← CountTriangles(Gi, i)
4: Barrier

5: Find T =
∑

i
Ti {processor 0 computes T}

6: return T

Figure 3: The main steps of PATRIC.

4.2 Partitioning the Network
The memory restriction poses a difficulty where the graph

must be partitioned in such a way that the memory required
to store a partition is minimized and at the same time the
partition contains sufficient information to minimize com-
munications among processors. For the input graphG(V,E),
processor i works on Gi(Vi, Ei), which is a subgraph of G
induced by Vi. The subgraph Gi is constructed as follows:
First, set of nodes V is partitioned into P disjoint subsets
V c
0 , V

c
1 , . . . , V

c
p−1, such that, for any j and k, V c

j ∩ V c
k = ∅

and
⋃

k
V c
k = V . Second, set Vi is constructed containing all

nodes in V c
i and

⋃

v∈V c

i

Nv. Edge set Ei ⊂ E is the set of

edges (u, v) such that u, v ∈ Vi and (u, v) ∈ E.
Each processor i is responsible for counting triangles in-

cident on the nodes in V c
i . We call any node v ∈ V c

i a
core node of processor i. Each v ∈ V is a core node in
exactly one partition. How the nodes in V are distributed
among the core sets V c

i for all processors i crucially and
significantly affect the load balancing and performance of
the algorithm. Later in Section 4.4, we present several load
balancing schemes and the details of how sets V c

i are con-
structed.

Now, processor i stores neighbor set Nv of all v ∈ Vi.
Notice that for a node w ∈ (Vi − V c

i ), neighbor set Nw may
contain some nodes that are not in Vi. Such neighbors of
w, which are not in Vi, can be safely removed from Nw and
the number of triangles incident on all v ∈ V c

i can still be
computed correctly. But, the presence of these nodes in
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1: for v ∈ Vi do
2: sortNv in ascending order
3: T ← 0
4: for v ∈ V c

i do
5: for u ∈ Nv do
6: S ← Nv ∩Nu

7: T ← T + |S|
8: return T

Figure 5: Algorithm executed by proces-
sor i to count triangles in Gi(Vi, Ei).

. . .vn−1

v1

v2

v0

v5

v4

v3

Figure 6: A network with a skewed de-
gree distribution: dv0 = n−1, dvi 6=0

= 3.

Nw does not affect the correctness of the algorithm either.
However, we do not store such nodes in Nw to optimize
memory usage. Figure 4 shows the differences in memory
usage with and without this optimization for two networks:
Miami and LiveJournal. As the experimental results show,
this optimization saves about 50% of memory space. Figure
4 also demonstrates the memory-scalability of PATRIC: as
the more processors are used, each processor consumes less
memory space.

4.3 Counting Triangles
Once each processor i has its partition Gi(Vi, Ei), it uses

the modified sequential algorithm NodeIteratorN presented
in Section 3 to count triangles in Gi for each core node
v ∈ V c

i . Neighbor sets Nw for the nodes w ∈ Vi − V c
i only

help in finding the edges among the neighbors of the core
nodes. To be able to use an efficient intersection operation,
Nv for all v ∈ Vi are sorted. The code executed by processor
i is given in Figure 5.
Once all processors complete their counting steps, the

counts from all processors are aggregated into a single count
by an MPI reduce function, which takes O(logP ) time. Or-
dering of the nodes, construction of Nv, and disjoint node
partitions V c

i make sure that each triangle in the network
appears exactly in one partition Gi. Thus, the correctness
of the sequential algorithm NodeIteratorN shown in Section
3 ensures that each triangle is counted exactly once.

4.4 Load Balancing in PATRIC
A parallel algorithm is completed when all of the pro-

cessors complete their tasks. Thus, to reduce the running
time of a parallel algorithm, it is desirable that no proces-
sor remains idle and all processors complete their executions
almost at the same time. Furthermore, to deal with a mas-
sive network, it is also desirable that all partitions Gi(Vi, Ei)
require almost the same amount of memory space.
In Section 3, we discussed how degree based ordering of

the nodes can reduce the running time of the sequential al-
gorithm, and hence it reduces the running time of the local
computation in each processor i. We observe that, inter-
estingly, this degree-based ordering also provides load bal-
ancing to some extent, both in terms of running time and
space, at no additional cost. Consider the example network
shown in Figure 6. With an arbitrary ordering of the nodes,
|Nv0 | can be as much as n− 1, and a single processor which
contains v0 as a core node is responsible for counting all tri-
angles incident on v0. Then the running time of the parallel

algorithm can essentially be as same as that of a sequen-
tial algorithm. With the degree-based ordering, we have
|Nv0 | = 0 and |Nvi | ≤ 3 for all i. Now if the core nodes are
equally distributed among the processors, both space and
computation time are almost balanced.

Although degree-based ordering helps mitigate the effect
of skewness in degree distribution and balance load to some
extent, working with more complex networks and highly
skewed degree distribution reveals that distributing core nodes
equally among processors does not make the load well-balanced
in many cases. Figure 7 shows speedup of the parallel al-
gorithm with an equal number of core nodes assigned to
each processor. The speedup factor due to a parallelization
is defined as ts/tp, where ts and tp are computation time
required by a sequential and the parallel algorithm, respec-
tively. As shown in Figure 7, LiveJournal networks show
poor speedup, whereas the Miami network shows a rela-
tively better speedup. This poor speedup for LiveJournal
network is a consequence of highly imbalanced computation
load across the processors as shown in Figure 8. Although
most of the processors complete their tasks in less than a sec-
ond, very few of them take an unusually longer time leading
to poor speedup. Unlike Miami network, LiveJournal net-
work has a very skewed degree distribution. In the next
section, we present several load balancing schemes that im-
prove the performance of our algorithm significantly.

Proposed Load Balancing Schemes
The load balancing schemes we propose require some pre-
computation before executing the main steps for counting
the triangles. Thus, our parallel algorithm PATRIC works
in two phases, as shown below.

1. Computing balanced load: This phase computes par-
titions V c

i so that the computational loads are well-
balanced.

2. Counting triangles: This phase counts the triangles
following the algorithms in Figure 3 and 5.

Computational cost for phase 1 is referred to as load-

balancing cost, for phase 2 as counting cost, and the total
cost for these two phases as total computational cost. In
order to be able to distribute load evenly among the proces-
sors, we need an estimation of computation load for com-
puting triangles. For this purpose, we define a cost function

f : V → R, such that f(v) is the computational cost for
counting triangle incident on node v (Lines 4-7 in Figure
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Figure 9: Load balancing cost for Live-
Journal network with different schemes.

5). Then, the total cost incurred to processor i is given by
∑

v∈V c

i

f(v). To achieve a good load balancing,
∑

v∈V c

i

f(v)

should be almost equal for all i. Thus, the computation of
balanced load consists of the following:

1. Computing f : Compute f(v) for each v ∈ V

2. Computing partitions: Determine P disjoint parti-
tions V c

i such that

∑

v∈V c

i

f(v) ≈ 1

P

∑

v∈V

f(v) (2)

The above computation must also be done in parallel.
Otherwise, this computation takes at least Ω(n) time, which
can wipe out the benefit gained from balancing load com-
pletely or even have a negative effect on the performance.
Parallelizing the above computation, especially computing
partitions step, is a non-trivial problem. Next, we describe
parallel algorithm to perform the above computation.

Computing f :
It might not be possible to exactly compute the value of
f(v) before the actual execution of counting triangles takes
place. Fortunately, Theorem 2 provides a mathematical for-
mulation of counting cost in terms of the number of vertices,
edges, original degree d and effective degree d̂. Guided by
Theorem 2, we have come up with several approximate cost
function f(v) which are listed in Table 3. Each function
corresponds to one load balancing scheme. The rightmost
column of the table contains short notations used to identify
the individual schemes.

Table 3: Cost functions f(.) for load balancing schemes

Node Function Identifying Notation
f(v) = 1 N

f(v) = dv D

f(v) = d̂v DH

f(v) = dvd̂v DDH

f(v) = d̂v
2

DH
2

f(v) =
∑

u∈Nv
(d̂v + d̂u) DPD

The input network is given in a file in adjacency list for-
mat: adjacency list of the first node followed by that of the
second node, and so on. The input file is considered divided
by size (number of bytes) into P chunks. Initially, processor
i reads in ith chunk from the file in parallel. Thus processor

i contains the adjacency lists Nv for the nodes v that are in
the ith chunk. If a chunk boundary falls in the middle of
an adjacency list, the boundary is shifted so that the entire
adjacency list is in only one chunk. (Note that the nodes in
ith chunk do not necessarily constitute the core nodes V c

i for
processor i. These chunks are used only for the purpose of
computing balanced load and finding the actual partitions
V c
i .) Thus, the degree dv of each node v in ith chunk is

known to processor i. Every processor i computes f(v) for
all nodes v in the ith chunk in parallel. Computation of f(v)
for different schemes are given below.

• f(v) = 1 : This function requires no computation and
assigns an equal number of core vertices to each pro-
cessor.

• f(v) = dv: This function also does not require any
computation as dv is already known to processor i.
This scheme assigns an equal number of edges to each
processor.

• f(v) = d̂v : Processor i needs degrees of the neighbors

of v to compute d̂v. Some nodes u ∈ Nv might reside
in some other processors. Processor i communicates
with those processors to find du.

• f(v) = dvd̂v : The computation of dvd̂v requires the

computation of dv and d̂v, which have been discussed
above.

• f(v) = d̂v
2
: It requires computation of d̂v, which is

done as described above.

• f(v) =
∑

u∈Nv
(d̂v + d̂u) : This function gives the best

estimation of the counting cost. However, computing
this function requires two levels of communications, as
described below.

i. Computing d̂v: discussed above.

ii. Computing d̂u for nodes u ∈ Nv: once d̂v is com-
puted for all v in ith chunk by all processor i,
this processor communicates with processors j to
obtain d̂u where u is in the jth chunk.

Computing partitions:
Given that each processor i knows f(v) for all v in ith chunk
as described above, our goal is to partition V into P disjoint
subsets V c

i such that
∑

v∈V c

i

f(v) ≈ 1
P

∑

v∈V
f(v). Assum-

ing the nodes in V are labeled as 0, 1, 2, . . . , n − 1 in this



order, first the cumulative sum g(v) =
∑v

k=0 f(k) for each
v ∈ V is computed using a parallel algorithm given in [1]
and summarized below:

i. Let the nodes in the ith chunk be ni, ni+1, . . . , ni+1−
1. Each processor i finds local sum Si =

∑ni+1−1
v=ni

f(v).

ii. The processors compute cumulative local sums Ri as
follows: processor 0 sets R0 = S0 and sends R0 to
Processor 1; any other processor i waits until it receives
Ri−1 from processor i − 1. Once Ri−1 is received, it
computes Ri = Ri−1 + Si and sends Ri to processor
i+ 1.

iii. Each processor i computes cumulative sum g(v) as fol-
lows: g(ni) = Ri−1 + f(ni) and g(v) = g(v− 1)+ f(v)
for ni < v < ni+1.

Next we show how the partitions V c
i can be computed

from the cumulative sums g(v) for all v ∈ V . Notice that
RP−1 =

∑

v∈V
f(v). Processor (P − 1) computes α =

1
P

∑

v∈V
f(v) = 1

P
RP−1 and broadcast α to all other pro-

cessors. Each processors i finds the boundary nodes xj in
its chunk: node xj is the jth boundary node if and only if
g(xj − 1) < jα ≤ g(xj). Processor i can find the bound-
ary nodes in the ith chunk by simply scanning the cumu-
lative sum g(v) for the nodes in the ith chunk. Notice
that some chunks may have multiple boundary nodes and
some chunks may not have any. For each boundary node
xj found in the ith chunk, processor i sends messages con-
taining xj − 1 and xj to processor j − 1 and j, respectively.
Each processor j receives exactly two messages containing
xj and xj+1 − 1. Then partition V c

j is the set of nodes
{xj , xj + 1, . . . , xj+1 − 1}.
Since scheme DPD requires two levels of communication

for computing f(.), it has the largest load balancing cost
among all schemes . Computing f(.) for DPD requiresO(m

P
+

P logP ) time. Computing partitions has a runtime complex-
ity of O(m

P
+P ). Therefore, the load balancing cost of DPD

is given by O(m
P

+ P logP ). Figure 9 shows an experimen-
tal result of the load balancing cost for different schemes on
the LiveJournal network. Scheme N has the lowest cost and
DPD the highest. Schemes DH, DH2, and DDH have a quite
similar load balancing cost.

4.5 Performance Analysis
In this section, we present the experimental results eval-

uating the performance of PATRIC and the load balancing
schemes given in Section 4.4. We also compare the perfor-
mance of PATRIC with the only other known distributed-
memory parallel algorithm [27] for counting triangles.

4.5.1 Strong Scaling
Strong scaling of a parallel algorithm shows how much

speedup a parallel algorithm gains as the number of proces-
sors increases. Figure 10 shows strong scaling of PATRIC
on LiveJournal, Miami and Twitter networks with differ-
ent load balancing schemes. The speedup factors of these
schemes are almost equal on Miami network. Schemes N

and D have a little better speedup than the others. On
the contrary, for LiveJournal and Twitter networks, speedup
factors for different load balancing schemes vary quite signif-
icantly. Schemes DPD and DH

2 achieve better speedup than
the other schemes for these networks. As discussed before,
Miami is a network with an almost even degree distribution.

Thus, all load balancing schemes, even simpler schemes like
N and D, distribute loads equally among processors (Fig-
ure 11). This produces an almost same speedup on Miami
network with all load balancing schemes. A lower load bal-
ancing cost of schemes N and D (as shown in Figure 9) yields
a little higher speedup. Unlike Miami network, LiveJournal
and Twitter have a very skewed degree distribution. As a
result, partitioning the network based on number of nodes
(N) or degree (D) do not provide good load balancing. The
other schemes, especially DPD, capture the computational
load more precisely and produce a very even load distribu-
tion among processors (Figure 11). In fact, scheme DPD

provides the best speedup for LiveJournal and Twitter net-
works. Our subsequent results will be based on the scheme
DPD since it performs better than other schemes on real
world networks with skewed degree distribution.

4.5.2 Scaling with Network Size
The load-balancing cost of our algorithm, as shown in

Section 4.4, is O(m/P+P logP ). For the algorithm given in

Figure 5, the counting cost is O(
∑

v∈V c

i

∑

u∈Nv
(d̂u + d̂v)).

Thus, the total computational cost of our algorithm is,

F (P ) = O(m/P + P logP +max
i

∑

v∈V c

i

∑

u∈Nv

(d̂u + d̂v))

≈ c1m/P + c2P logP + c3 max
i

∑

v∈V c

i

∑

u∈Nv

(d̂u + d̂v),

where c1, c2, and c3 are constants. Now, quantity denoting
computation cost, (c1m/P + c3

∑

v∈V c

i

∑

u∈Nv
(d̂u + d̂v)),

decreases with the increase of P , but communication cost
P logP increases with P . Thus, initially when P increases,
the overall runtime decreases (hence the speedup increases).
But, for some large value of P , the term P logP becomes
dominating, and the overall runtime increases with the ad-
dition of further processors, as seen for PA(5M, 50) network
in Figure 12.

Notice that communication cost P logP is independent of
network size. Therefore, when networks grow larger, com-
putation cost increases, and hence they scale to a higher
number of processors, as shown in Figure 12. This is, in
fact, a highly desirable behavior of our parallel algorithm
which is designed for real world massive networks. We need
large number of processors when the network size is large
and computation time is high.

Consequently, there is an optimal value of P , Popt, for
which the total time F (P ) drops to its minimum and the
speedup reaches its maximum. To have an estimation of
Popt, we replace d and d̂ with average degree d̄ and d̄/2, re-
spectively, and have F (P ) ≈ c1nd̄/P +c2P logP +c3nd̄

2/P .
At the minimum point, d

dP

(

F (P )
)

= 0, which gives the

following relationship of Popt, n and d̄: P 2(1 + logP ) =
n
c2
(c3d̄

2 + c1d̄). Thus, Popt has roughly a linear relationship

with
√
n and d̄. If a network with number of nodes n′ and

average degree d̄′ experimentally shows an optimal P of P ′

opt,
then another network with n nodes and an average degree
d̄ has an approximate Popt ≈ P ′

opt
d̄

d̄′

√

n
n′ . This estimate is

reflected in the result presented in Figure 12, where, for ex-
ample, the network PA(25M, 50) has Popt ≈ 250 which is
approximately

√
5 times of that of PA(5M, 50) (P ′

opt ≈ 110).
Thus, if we compute P ′

opt experimentally by trial and error
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Figure 10: Speedup gained from different load balancing schemes for LiveJournal, Miami and Twitter networks.

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70  80  90  100

T
im

e 
R

eq
ui

re
d 

(s
ec

)

Rank of Processors

N
D

DH
DDH
DH2

DPD

(a) Miami network

 0

 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50  60  70  80  90  100

T
im

e 
R

eq
ui

re
d 

(s
ec

)

Rank of Processors

N
D

DH
DDH
DH2

DPD

(b) LiveJournal network

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0  10  20  30  40  50  60  70  80

T
im

e 
R

eq
ui

re
d 

(s
ec

)

Rank of Processors

N
D

DH
DDH
DH2

DPD

(c) Twitter network

Figure 11: Load distribution among processors for LiveJournal, Miami and Twitter networks by different schemes.
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Figure 12: Improved scalability with in-
creased network size.
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Figure 13: Weak scaling on PA(P/10 ×
1M, 50) networks.

v v
′

u

w

Figure 14: Two triangles (v, u, w) and
(v′, u, w) with an overlapping edge.

for a smaller network, we can estimate Popt for all other
networks.

4.5.3 Weak Scaling
Weak scaling of a parallel algorithm shows the ability of

the algorithm to maintain constant computation time when
the problem size grows proportionally with the increasing
number of processors. We use PA(n,m) networks for this
experiment, and for x processors, we use network PA(x/10×
1M, 50). The weak scaling of PATRIC is shown in Figure 13.
Triangle counting cost remains almost constant (blue line).
Since the load-balancing step has a communication overhead
of O(P logP ), load-balancing cost increases gradually with
the increase of processors. It causes the total computation

time to grow slowly with the addition of processors (red
line). Since the growth is very slow and the runtime remains
almost constant, the weak scaling of PATRIC is very good.

4.5.4 Comparison with Previous Algorithms
The runtime of PATRIC on the mentioned networks are

shown in Table 4. We compare the running of PATRIC
with a very recent distributed-memory parallel algorithm
for counting triangles given in [27]. We select three of the
five networks used in [27]. Twitter and LiveJournal are the
two largest among the networks used in [27]. We also use
web-BerkStan which has a very skewed degree distribution.
No artificial network is used in [27]. For all of these three
networks, PATRIC is more than 45 times faster than the



algorithm in [27]. The improvement over [27] is due to the
fact that their algorithm generates a huge volume of inter-
mediate data, which are all possible 2-paths centered at each
node. The amount of such intermediate data can be signif-
icantly larger than the original network. For example, for
the Twitter network, 300B 2-paths are generated while there
are only 2.4B edges in the network. The algorithm in [27]
shuffles and regroups these 2-paths, which take significantly
larger time and also memory. To deal with the memory is-
sue, they proposed a partitioning scheme that improves the
memory requirement to an extent; however, it does not im-
prove the running time (see [27] for details).

5. A SPARSIFICATION-BASED PARALLEL
APPROXIMATION ALGORITHM

In this section, we integrate a sparsification technique,
called DOULION, proposed in [28] with our parallel algo-
rithm. Our adapted version of DOULION provides more
accuracy than DOULION. Sparsification of a network is a
sampling technique where some randomly chosen edges are
retained and the rest are deleted, and then computation is
performed in the sparsified network. Sparsification of a net-
work saves both computation time and memory space and
provides an approximate result.
Let G(V,E) and G′(V,E′ ⊂ E) be the networks before

and after sparsification, respectively. Network G′(V,E′) is
obtained fromG(V,E) by retaining each edge, independently,
with probability p and removing with probability 1−p. Now
any algorithm can be used to find the exact number of tri-
angles in G′. Let T (G′) be the number of triangles in G′.
The estimated number of triangles in G is given by 1

p3
T (G′),

which is an unbiased estimation since E
[

1
p3
T (G′)

]

= T (G).

As shown in [28], the variance of the estimated number of
triangles is

Var =

(

1

p3
− 1

)

T (G) + 2k

(

1

p
− 1

)

, (3)

where k is the number of pairs of triangles in G with an
overlapping edge (see Figure 14).
In our parallel algorithm, sparsification is done as follows:

each processor i independently performs sparsification on its
partitionGi(Vi, Ei). While loading partitionGi into its local
memory, it retains each edge (u, v) ∈ Ei with probability p
and discards it with probability 1 − p as shown Figure 15.
If T ′ is the number of triangles obtained after sparsification,
1
p3
T ′ is the estimated number of triangles in G.

Notice that the sparsification of our algorithm is not ex-
actly the same as that of DOULION. Consider two triangles
(v, u, w) and (v′, u, w) with an overlapping edge (u,w) as

Table 4: Runtime Performance of PATRIC using 200 pro-
cessors and the algorithm in [27].

Networks
Runtime (sec.)

Triangles
PATRIC [27]

Twitter 9.4m 423m 34.8B
web-BerkStan 0.10s 1.70m 65M
LiveJournal 0.8s 5.33m 286M
Miami 0.6s – 332M
PA(1B, 20) 15.5m – 0.403M

1: for v ∈ Vi do
2: for (v, u) ∈ E do
3: if v ≺ u then
4: toss a biased coin with success prob. p
5: if success then
6: store u to Nv

7: Ti ← count of triangles
8: Find Sum T ′ =

∑

i
Ti using MpiReduce

9: T ← 1
p3
× T ′

Figure 15: Triangle counting with parallel sparsification

shown in Fig. 14. In DOULION, if edge (u,w) is not re-
tained, none of the two triangles survive, and as a result, sur-
vivals of (v, u, w) and (v′, u, w) are not independent events.
Now, in our case, if v and v′ are core nodes in two differ-
ent partitions Gi and Gj , processor i may retain edge (u,w)
while processor j discards (u,w), and vice versa. As proces-
sor i and j perform sparsification independently, survivals
of triangles (v, u, w) and (v′, u, w) are independent events.

However, our estimation is also unbiased, and in fact, this
difference (with DOULION) improves the accuracy of the
estimation by our parallel algorithm. Since the probabil-
ity of survival of any triangle is still exactly 1

p3
, we have

E
[

1
p3
T ′

]

= T . To calculate variance of the estimation,

let k′

i be the number of pairs of triangles with an overlap-
ping edge such that both triangles are in partition Gi, and
k′ =

∑

i
k′

i. Let k′′ be the number of pairs of triangles
(v, u, w) and (v′, u, w) with an overlapping edge (u,w) (as
shown in Fig. 14) and v and v′ are core nodes in two differ-
ent partitions. Then clearly, k′ + k′′ = k and k′ ≤ k. Now
following the same steps as in [28], one can show that the
variance of our estimation is

Var′ =

(

1

p3
− 1

)

T (G) + 2k′

(

1

p
− 1

)

. (4)

Comparing Eqn. 3 and 4, if k′′ > 0, we have k′ < k
and reduced variance leading to improved accuracy. This
observation is verified by experimental results on two real-
world networks (Table 5). It also suggests that accuracy can
be improved with a larger number of processors.

In [28], it was shown that due to sparsification with pa-
rameter p, the computation can be faster as much as 1/p2

times. However, in practice the speed up is typically smaller
than 1/p2 but larger than 1/p. Table 6 shows the accuracy
and speedup factor with varying p for the LiveJournal net-
work. The speedup factor, due to sparsification, of our algo-
rithm is better than that of DOULION. For the LiveJournal
network, DOULION shows a speedup of 31 with p = 0.1,
while our algorithm has a speedup of 58. Sparsification also
reduces memory requirement since only a subset of the edges
are stored in the main memory. As a result, adaptation of
sparsification allows our parallel algorithm to work with even
larger networks. With sampling probability p (the probabil-
ity of retaining an edge), the expected number of edges to
be stored in the main memory is p|E|. Thus, we can expect
that the use of sparsification with PATRIC will allow us to
work with a network 1/p times larger, a network with few
hundreds billion edges.



Table 5: Accuracy of our parallel sparsification algorithm and DOULION [28] with p = 0.1. Our parallel algorithm was run
with 100 processors. Variance, max error and average error are calculated from 25 independent runs for each of the algorithms.

Networks
Variance Avg. error (%) Max error (%)

Our Alg. DOULION Our Alg. DOULION Our Alg. DOULION
web-BerkStan 1.287 2.027 0.389 0.392 1.02 1.08
LiveJournal 1.770 1.958 1.46 1.86 3.88 4.75

Table 6: Comparison of our parallel sparsification algorithm and DOULION [28] on LiveJournal network with 100 processors.

Metrics p 0.1 0.2 0.3 0.4 0.5

Accuracy
Our Alg. 99.9914 99.9917 99.9924 99.9936 99.9971
DOULION 99.6310 99.7544 99.8392 99.9121 99.9584

Speedup
Our Alg. 57.88 24.36 11.04 6.19 4.0
DOULION 30.96 11.96 6.71 4.31 3.03
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